High-Throw DC Acid Copper Formulation for Vertical Continuous Electroplating Processes


Reading time ( words)

Abstract

The electronics industry has grown immensely over the last few decades owing to the rapid growth of consumer electronics in the modern world. New formulations are essential to fit the needs of manufacturing printed circuit boards and semiconductors. Copper electrolytes for high throwing power applications with high thermal reliability and high throughput are becoming extremely important for manufacturing high aspect ratio circuit boards.

Here we discuss innovative DC copper metallization formulations for hoist lines and vertical continuous plating (VCP) applications with high thermal reliability and throughput for high aspect ratio PCB manufacturing. The formula has a wide range of operation for current density. Most importantly, plating at high current density using this DC high-throw acid copper process offers high throughput, excellent thermal reliability, and improved properties for present-day PCB manufacturing. The operating CD range is 10–30 ASF where micro distribution of ≥ 85% for AR 8:1 is achievable. This formulation offers bright ductile deposits where plating parameters are optimized for improved micro-distribution and the properties of the plated copper deposit such as tensile strength and elongation. The thermal reliability and properties of the deposits were examined at different bath ages. Measured properties are: Elongation ≥ 18% and tensile strength ≥ 40,000 psi. All the additives can be easily controlled by cyclic voltammetry stripping (CVS) analysis.

Introduction

Copper has a high electrical conductivity and is relatively inexpensive compared to other high conductive metals such as silver. Therefore, the use of copper in the mass production of PCBs and semiconductors grew exponentially in the last few decades[1]. With today’s complex circuit board designs an even deposition with specific physical properties is necessary to meet the standards. Especially with high aspect ratios, through-hole plating to obtain desired plating distribution is much more challenging. During the quality control inspection, a board can be rejected if there is insufficient copper on the center walls of the through-holes. Moreover, plated copper should meet the minimum requirements of physical properties such as tensile strength and elongation (T&E) to withstand the high temperature applications[2].

To read the full version of this article which appeared in the August 2017 issue of The PCB Magazine, click here.

Share


Suggested Items

Orbotech’s Strategic Decision for End-to-End Partnership Benefits Everyone

02/14/2018 | Barry Matties, I-Connect007
Barry Matties met with Sharon Cohen, president of Orbotech West, at productronica 2017 to discuss what’s new at Orbotech, specifically their shift to be more customer-centric and to provide regional coverage across the globe. He also discusses the current trends in the marketplace and Industry 4.0.

Part 2: EIPC’s 2018 Winter Conference in Lyon, Review of Day 1

02/13/2018 | Pete Starkey, I-Connect007
We continue with the rest of Pete Starkey’s report on Day 1 of the EIPC Winter Conference in Lyon, France. Included in this segment are presentations by Ventec, Ericsson, TTM and others, plus photos of their evening tour of Alstom.

Aismalibar on Laminates, Following the Market, and More

02/06/2018 | Barry Matties and Patty Goldman, I-Connect007
At productronica, Barry Matties, Andy Shaughnessy, and Patty Goldman of the 007 team sat down with Eduardo Benmayor, director general with Aismalibar, a laminate supplier currently focusing on thermal management for the LED and automotive markets.



Copyright © 2018 I-Connect007. All rights reserved.